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The approach to equilibrium of a finite segment of an infinite chain of harmonically 
coupled masses is studied in several variations. The chain is taken as completely free, 
or it is bound at x0 = 0; ordinary coordinates and momenta or Schrrdinger variables 
are used to treat the dynamics; and the inital distribution of heat-bath variables is 
chosen to be canonical or noncanonical. Equipartition of energy is found in all cases. 
Brownian drifts are obtained for the free chain with ordinary variables, but when this 
is excluded, the equilibrium entropy is found to be canonical and extensive when the 
initial heat bath is canonical, but less than canonical and slightly nonextensive when 
the initial heat bath is noncanonical. The modifications of the entropy do not contribute 
to the heat capacity of the system. 

KEY W O R D S :  Entropy; information theory; approach to equilibrium; coupled 
oscillators; Liouville function; nonequilibrium statistical mechanics, noncanonical 
equilibrium; harmonic chain. 

1. I N T R O D U C T I O N  

In  the first pape r  o f  this series (1) (hereinafter  deno ted  by I ) ,  we have t rea ted  
the t empora l  evolut ion o f  a finite segment  (the system) o f  an infinite l inear  chain  o f  
coupled  h a r m o n i c  oscil lators.  The  par ts  o f  chain tha t  are no t  in the system are regarded  
as a hea t  bath.  The exact  dynamica l  solut ion o f  the equat ions  o f  m o t i o n  yields the 
t empora l  behavior  o f  each coord ina te  and m o m e n t u m  in the chain in terms o f  the  
ini t ial  values of  all the coordina tes  and  momenta .  

Stat is t ical  mechanics  was in t roduced  by  recognizing tha t  our  knowledge  o f  these 
ini t ial  values,  especially those  o f  the hea t  ba th ,  is inexact ,  and  should  p roper ly  be 
specified probabi l is t ical ly .  In  I,  we chose the init ial  p robab i l i ty  densi ty o f  the hea t  
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bath to be a product of individual Gaussian probability densities of the coordinates 
and momenta, rather than the more usual canonical expression. We demonstrated 
that, even with this noncanonical initial description of the heat bath, energy is equi- 
partitioned, temperature is defined naturally in terms of appropriate variances, and 
many of the usual properties of equilibrium were attained. 

In our treatment of the simple chain, however, the Brownian drift of the system 
led to an ever-increasing entropy, as is physically plausible, rather than to true 
equilibrium. (For the more complicated harmonically bound chain, also treated i n / ,  
a true equilibrium was reached, but the Gaussian initial probability densities were 
very nearly canonical for this system, and the treatment given was not exact.) In 
addition, nearest-neighbor momentum correlations were found to persist as t--~ 0% 
so that the quasiequilibriurn state was not one of canonical equilibrium. 

We have discussed the underlying logical basis for our approach i n / ,  and in 
somewhat more general terms in another paper. (~) In the present paper, we give exact 
equilibrium (where possible) results of calculations for the simple chain in eight 
variations, represented by (1) Gaussian or canonical initial distributions, (2) ordinary 
or Schrrdinger (~) variables, and (3) the free chain, or one with x0 fixed at its origin. 
The Schr~Sdinger variables are essentially momenta and spring stretchings, rather 
than momenta and coordinates; they therefore reveal nothing about the Brownian 
motion of the entire system, even when it is present. The chain with x0 fixed 
is prevented from drifting. We can, with these choices, separate out the effects of 
initial distribution from the consequences of Brownian drift. 

We show that equilibrium need not be canonical, that entropy is not necessarily 
extensive for some systems or choices of variables, and that our initial knowledge 
of the heat bath may lead to an equilibrium entropy of the system that is less than the 
canonical one. 

In Section 2, we review the dynamics briefly; in Section 3, we present the statistical 
procedures; and in subsequent sections, the results are presented and discussed. 

2. D Y N A M I C S  

We consider an infinite linear chain of equal masses m, connected by springs of 
constant k, for which the Hamiltonian is 

H = ~ [(pn2/2m) -t- (k/2)(xn+l -- xn) 2] (1) 
n = - - c o  

The solutions of the equations of motion are well known to be 

x.(t) = ~ [x.+~(O) fr(t) + p.+~(0) g~(t)/2moo] (2a) 

and 
p~(t) = rnS~(t) (2b) 

where co 2 = k/m, and with r = 2oJt, we can write 

fr(t) = J2~(~') (3) 
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and 

f g, .(O - -  J~, .(y) dy  (4) 
o 

All solutions for the semiinfinite chain, where Xo(t) = 0 for all t, can be derived 
from Eqs. (2), merely by requiring that xn(0) = --x_n(0) and p.(0) = --p_.(0). 

The dynamics may be elegantly treated by use of the SchrSdinger variables(Z): 

~2n = ml/22. = Pn/ml/~ (5a) 

and 

~ . + ~  = k i n ( x , ,  - x . + O  = o ~ m ~ n ( x .  - X.+l) 

The equations of motion then become simply 

26. = ~ n - 1  - -  ~ n + l  

with the solution 

(5b) 

(6) 

~.(t) = ~ ~+n(0) Jr(r) (7) 

The inverse of the SchrSdinger transformation is trivial for the momenta; for the 
coordinates, it is given by 

and 

n--1 

x .  = Xo - k -1 /2  F, ~ + 1 ,  n > 0 (8a) 
r=0 

[nl--Z 
Xn = Xo -~- k -1/2 E ~--(2r--1) , H < 0 ( 8 b )  

/,=0 

The coordinate xo is thus explicit in all the SchrSdinger coordinate inverses; in order 
to convert spring elongations into coordinate displacements, one must have a reference 
point. 

3. E N T R O P Y  A N D  T H E  C O V A R I A N C E  M A T R I X  

The entropy function to be used here, as in L is given by 

SN = --kB f pu(t) ln(h~pN) dF  (9) 
2 ~ 

where ON(t) is the reduced Liouville function for the system of N masses and their 
connecting springs, kn is Boltzmann's constant, h is a constant with the units of action, 
and F is the 2N-dimensional phase volume of the system. The reduced Liouville 
function is nothing more than the time-dependent probability density that describes 
our state of knowledge of the system variables as a consequence of the dynamical 
evolution expressed in the equations of motion and the initial statistical description 
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of the system and heat bath. As already explained, (1,2) p~(t) can best be calculated by 
means of the characteristic function, or Fourier transform, of the complete LiouviUe 
function of the chain. The calculation, which need not be repeated here, yields the 
expression 

ON(X, t) = (27r) -N (det W)-I/2 exp[--f2W-IX/2] (10) 

where X is a 2N-component vector, the transpose of which is 

2g?(t) = (xlxs ... XNplp2 "'" PN) (1 1) 

and W is the so-called covariance matrix, given as 

where M = (M~s), G = (G~;), Q = (Q~j), and these matrix elements are given by the 
time-dependent statistical averages 

Mij = (xi(t)  x~(t)) 03) 

QiJ = (pi ( t )p j ( t )}  (14) 
and 

Gij = (xi(t)  pj(t))  (15) 

When px(t), as given by Eq. (10), is used in Eq. (9), the entropy function becomes 

SN(t) = N k ,  + kB ln[h-U(det W )  1/21 (16) 

where h = h/2~v. Thus, it is seen that only the covariance matrix W is needed for the 
purpose of finding the entropy, and the matrix elements of W can be calculated directly 
from the initial probability density by use of Eqs. (2). We have, for example, 

M~5 = f xi(t) x~(t) p(O) f l  dx.(O) dp.(O) (17) 
n = - - o o  

where xdt )  is expressed in terms of the initial values of the coordinates and momenta, 
as given in Eq. (2a). The specification of p(0) permits the integrations to be carried 
out directly. 

In the case of Schr/Sdinger variables, we have, in analogy to Eq. (10), 

pN(3, t) = (2~-) -~r (det W~:) 1/2 N exp(--~ W~-lm/2) 

where S(t) is the 2N-component vector of the ~:~, the transpose of which is 

~ ( t )  = (~1~3 "'" ~2N--1~2~4 "'" ~2N) 

(18) 

and W~ is defined in analogy to W of Eq. (12), with Mi~ = (~2i_1(t)~2j._l(t)), 
Qij = (scJ2j), and Gij = (~2i-z~.~). The entropy is identical in form to Eq. (16), 
and need not be rewritten. 

(19) 
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4. P R E S E N T A T I O N  O F  RESULTS 

Two distinct dynamical problems have been treated--the free chain and the 
chain with x0 = 0 for all t. Each of these has been treated in terms of ordinary 
coordinates and momenta and in terms of Schr6dinger variables. Finally, each 
variation of the dynamics has been treated with both canonical and Gaussian initial 
distributions of the variables. Details of the calculations are, in most cases, not 
particularly interesting; they are available, as long as the supply lasts, upon request, m 

In the present paper, we have made the minor simplification that the initial 
system variables are zero-centered, rather than centered around nonzero initial 
expectation values. Very little extra effort, other than notational inconvenience, is 
required to include the nonzero initial expectation values. Since we have already 
treated such systems, a,2~ however, and since these nonthermal terms do not contribute 
to the entropy or to any of the final equilibrium properties of the system, we have not 
carried them along. 

Notational economy is effected by the use of a variety of four-index symbols 
(a, b; e, d), etc., that are defined in the appendix. Results of the calculations with 
canonical initial distributions for the four dynamical treatments are presented in 
Section 5; those with Gaussian initial distribution are found in Section 6. 

5. C A N O N I C A L  I N I T I A L  C O N D I T I O N S  

The initial probability density for the system and heat bath is given in terms o f  
ordinary variables, taken at t = 0, as 

p(0) = N-11_I exp[--(x~+z~(2rr) 1/2- x.)2/2a 2] fi exp[--p,~2/282] 
n=l n=l 

• f i  exp[--(x'~+l--Xn)2/2e2] f i  exp[--P"2/2$q 
n=N ~(2rr) 1/2 $(2rr) 1/2 n=N+l  

-~ e x p [ - - ( X , + l -  x,)~/2dl ~ exp[--p,2/2~ 2] 
x H 

qZ=--I r 

exp[ -xo~ /2$q  
x (20) 

where the final factor represents our initial knowledge of one coordinate. The average 
initial energy terms are seen to be, for the system, 

and 

(p,~Z)o/2m = 8~/2m (21a) 

(k/2)((x,~+l --  x,~)2)o = ka2/2 = m0~2o~/2 (21b) 

and for the heat bath, 

(p ,~)o/2m = $~/2m = kBTjJ2 (22a) 

822/3/2-6 
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and 

( k / 2 ) ( ( x . + z  - -  x . )2)o = mw%=/2 = k ~ T J 2  (22b) 

where kinetic and potential  temperatures  have  been here defined. 
In  the sense that  Tk and T~ are not  necessarily equal, the initial probabi l i ty  

density of  the heat  ba th  is a slight general izat ion of  the canonical  one, carried along 
whenever it is convenient  to do so. 

The  initial probabil i ty  density in t e rms  of  Schr6dinger variables, obtainable 
directly f r o m  Eq. (20) by use of  Eqs. (5a) and  (5b), will not  be writ ten out  here. 

Results o f  the calculations for  elements  of  the covariance matr ix  W and the 
en t ropy  S are summar ized  in the following subsections. 

5.1. Canonical, Schr6dinger Variables, Free Chain 

For  t = 0, the following results are direct consequences of  Eq. (20): 

(E~,~)o = 3~/m, 1 <~ n ~ N;  (E~.)o = ~ l m ,  

2 

<Xo% = ,b ~. 

n 3 { 1 ,  N }  

n @ { O , N - -  1} 

(23) 

For  any t, the results are 

<~2~+,(t) ~2,:+1(t)) 
= [(a s - -  g2)/m](1, N; 2r - -  2j - -  1, 2r - -  2i - -  1) 

mc~2(o~ 2 - -  ~)(0, N; 2r - -  2j, 2r - -  2i) 

+ (g2/2m)[Sj, - -  J2(j_,)(2r)] + (mo~2d/2)[Sj, + J~(i_i)(2r)l 

( ~ 2 , ( t )  ~ 2 ; ( t ) )  

= (g" /m)( - -oo ,  co; 2r - -  2i, 2r - -  2j) + [(8 = - -  ~2)/rn](1, N; 2r - -  2i, 2r - -  2j) 

+ m c o 2 E = ( - - o o ,  oo; 2r q -  1 - -  2i, 2r q-  1 - -  2.]) -47 moJ2(e~ 2 - -  e =) 

• (0, N - -  1 ; 2 r q -  1 - - 2 i ,  2 r q -  1 - - 2 j )  

= [(moo%2/2) - -  (~2/2m)1 41-g~-i (2r) -t- [ (~  - -  82)/m1 

• (1, N; 2r - -  2i, 2r - -  1 - -  2j) 

+ m o , 2 ( e  ~ - -  c ,2)(0 ,  N - -  1;  2r ,-}- 1 - -  2i, 2r - -  2j) 

(24) 

(26) 

(25) 
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<x0(t) ~,(t)> 
= (2o~ v/m) -1 {((2/m)(--oo, oo; 2 r -  2i, 2 r ] - ?  [ ( 3 3 -  ~2)/m] 

• (1, N; 2r - -  2i, 2r] -b moo%2(-- o% oo; 2r q- 1 - -  2i, 2r q- 1] 

q- moJ~(c~ 2 - -  E2)(0, N - -  1; 2r q- 1 - -  2i, 2r + 1]} 

and 

(x0(t) &;+~(t)) 

= --(2~o V'm) -1 {(~2/rn)(-- oo, Go; 2r - -  2j - -  1, 2r] 

q- [(32 - -  ~2)/rn](1, N; 2r - -  2j - -  i, 2r] 

@ mco2e2(-- oo, 0(3; 2r - -  2j, 2r + 1] + moJ~(a 2 - -  ~2) 

• (0, N - -  1, 2r - -  2j, 2r § I]} 

(27), 

where r = 2oJt, and the four-index symbols  (.) and (.], which are sums o f  Bessel 
funct ions or their integrals, are defined in the appendix.  

As t ~ 0% these expressions decay to 

and 

(~2Y+l~2i+l>m = <~2j~2i>m = [(~2/2m) + (m~o%=/2)13Ji 

( G ~ + ~ G i ) ~  = 0 

(X0~2J+l)m = (X0~2j)m = (4C0 ~/m))-I [(~=/m) q- (m~o2E2)] (30) 

The initial and ul t imate values of  (det W) and S are found  to be 

det We(0 ) = (~oaS) 2N 

det We(m ) -~ ( k , T )  2N 

where T = (T~ -t- Tk)/2, f rom Eqs. (22) and (29), 

Se(O) = NkB + Nk~ ln(aS/h) 

and 

Se(oo ) = Nkn -Jr Nkn ln(ksT/hco) (34) 

I t  is of  interest to note  that  even though the initial kinetic and potential  tempera-  
tures in the heat  ba th  may  be unequal,  the final temperatures ,  as seen in Eq. (29), are 
equal, as a result o f  equipart i t ioning of  energy. The  initial and final covariance 
matr ices are diagonal,  as shown by Eqs. (23) and (29). The entropies of  Eqs. (33) and 
(34) are of  the same form when T in Eq. (34) is recognized to be the geometr ic  mean  
of  the final kinetic and potential  temperatures ,  and we write o)a8 = kB(T~oTko)l/2, in 
terms of  the initial kinetic and potential  temperatures  of  the system, which are defined 
by  replacing 3 and ~ by ~ and e, respectively, in Eqs. (22). I t  is noted that  [det W(0)] 
and S(0) are unchanged for  the next three variat ions of  the problem.  

(29) 

(31) 

(32) 

(33) 

(28) 
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5.2. Canonical, Ordinary Variables, Free Chain 

The results for this section follow directly from Eqs. (5), (8), and the results of 
Section 5.1 First, we write 

(Xo2(t)) = r -k [(82 _ ~:2)/(2m~o)2][1, N; 2r, 2r] 

§ [(a 2 -- e2)/4][0, N -- 1; 2r + 1, 2r -k 1] 

+ [~2z/(2oJm)2][f I" J o ( X ) d x -  J1(2~-)] + [d~-/4][2 f l  Jo(x)dx 

-- fi" Jo(x) dx -k J l ( 2 r ) -  2Jl(r)] (35) 

Then, from Eqs. (8) with 1 ~< r, s ~< N, we obtain 

(x~(t) x~(t)) -~ (Xo2(t)) -- (co ~/-~)-1 ~ (Xo(t) ~2j+l(t)) 
i=o 

8-1 
- -  (co ~r 2 (Xo(t) ~2J+a(t) ) 

j - o  

~"--1 s--1 

-k (o)2m) -~ Z Y] (~:2i+l(t)~23"+1(t)) (36) 
i=0 j=0 

where the required averages have been given in Eqs. (24), (28), and (35). Similarly, we 
have 

(pi(t) pj(t)) = m(~2i(t) ~2~(t)) (37) 

and 
i--1 

(xi(t) pj(t)> = ml/2(Xo(t) ~2j(t)) -- o71 ~ (~+l( t )  ~(t)> 

At t = 0, from Eq. (20), we start with 

(Pi(0)pj(0)) = m(~i(0))  3ij --~ ~23i., 

= ~2S~j, ir  N} 

(x . (O)  x .+~(o))  = r 3 + n~ 2, r ~> 0, 

<x~(0) pj(0)) = 0, 
and 

((x,+l -- x.)2)o (mw2/2) = mw%~2/2 = k~Tko/2 

As t -+ 0% the corresponding results are 

(p,p~>~/2m = (~ij/2)[(~/2m) + (m~o2d/2)l = (k,T/2) ~,j 

(x.x.+~>| = (xo~)~ -- (r/2moJ2)[(~2/2m) + (mo~%~/2)] 

(x~p~)~ = keT/4~o 

l <~ i <~ N 

l <~ n <~ N 

(38) 

(39a) 

(39b) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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and 

<Xo2(t)) ._+ ~b2 + N[(~2 _ ~)/(2oJrn)2 + (~2 _ d)/4] 

-~ (~-/4)[(~/com) 2 -~ E ~ -- (~/com) 2 J~(2~-) + E2J~(2~ -) -- 2~2J1(~-)] (46) 

where T = 2oJt. 
The free chain drifts with time, as expected, since there is no constraint to anchor 

it. For ~- >> N, the dominant term in Eq. (46) is 

<Xo2(t)) ~ r 2 = tkBT/mo~ (47) 

A diffusivity may be obtained from the relation (x0 ~) = 2Dt, yielding 

D~ = kBT/2mco (48) 

in agreement with Hemmer's result. (5) 
The covariance matrix elements for t--~ oe are given by Eqs. (43)-(45), but 

because of the diffusion of the entire chain, both det W and S are expected to increase 
without limit. Nevertheless, we can write det WN in terms of <x02> for cot >> N as 

det Wu(t)  --+ (kBT/~o) 2~r [(mco2<Xo2>/k~T) -- O(N)] (49) 

where, in order for this approximation to be valid, terms of the order of N are negli- 
gible compared to the <x0 ~) term. By use of Eqs. (18) and (47), we write the entropy as 

Su(t) --+ Nk e  § Nk~ ln(k~T/h~o) + (k9/2) ln(~ot) (50) 

It is thus seen that, except for the Brownian drift term, the entropy of Eq. (50) 
agrees with that of Eq. (34) for the same system in terms of SchrSdinger variables. The 
time-dependent term in (50) is not proportional to N, and therefore is not extensive; 
it serves as a reminder that thermodynamic entropy is not intrinsically and fundamen- 
tally extensive for all choices of systems. 

5.3. Canonical ,  Schr6dinger  Var iab les ,  x 0 Fixed 

The elements of the covariance matrix, when Xo is fixed at the origin, are obtained 
from evident symmetry operations on the results of Section 5.1. At t = 0, the condi- 
tions are the same as those given by Eqs. (23), except that q~ = 0. For any t, we obtain 

<~j+l(t) ~+l(t)> 
= [(~2/2m) -+- (mm2e2/2)] 8ij -~- [(m~o2e2/2) -- (~2/2m)] 

• [J~;_~i(2~) + J~j+~+~(2~)] 
N 

f = l  

N- -1  

+ mw2( ~2 --  eg) 2 (JzJ-zr + J2j+~r+2)(J2i-2r + J2i+2,+2) (51) 
'r=O 

<~j(t) ~:~i(t)> 
= [(U/2m) § (rno~2d/2)] $~; § [(mco%2/2) - (~2/2m)] 

X [J2j+2i(2~') -- J2r (52) 
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and 
<~:uj(t) ~2i+z(t)> 

= [(m~ -- (~2/2rn)][J2J+~i+z -- J2i-2J+11 
N 

+ [(~z _ ~2)/m] ~ (J~J-2~ - a2~+2r)(J2i+a-2, - -  J2i+l+2r) 
r=J. 

N--1 
+ mo)2(a 2 -- d)  Z (J2J-~r-1 + J2~+2r+z)(J~i-2r + J2,+~r+z) (53) 

where the arguments of the Bessel functions are all 2~" = 4o~t. 
As t--> 0% these matrix elements become 

<~J+z~2i+l>| = Sj~knT (54a) 

(~:2j~2i)~o = 3j,k.T (54b) 

and 

<~2J~2i+1>~ = 0 (54C) 

where kBT = (~2/2m) -J- (mooed/2), as before. These ultimate matrix elements are 
the same as those of Section 5.1, showing that the covariance matrix and the entropy 
at equilibrium are not affected by the process of fixing x0, provided that variables are 
so chosen that the Brownian motion is concealed. 

5.4. Canonical, Ord inary  Variables, x 0 Fixed 

The elements of the covariance matrix follow from Eqs. (5) and (8) and the 
results of Section 5.3. Only the results as t ~ oe will be given here. These, giving a 
simpler covariance matrix than when x0 is free, are found to be 

~x,~x,~+r)~ ~- nkBT/rnco 2, r >~ 0 (55a) 

(PiPj)~ = ~,jmk~T (55b) 

and 

(xipj)~ = 0 (55c) 

Although some x - x  correlations exist, as seen in Eq. (55a), these arise merely 
from the displacement of the nth particle resulting in origin shifts of all particles 
further away from x0 than the nth, and they contribute nothing to the entropy. The 
equilibrium entropy is found to be 

SN(~) = Nk8 + Nk ,  ln(kBT/hoJ) (56) 

in agreement with all the others except that of Section 5.2, where Brownian motion 
modifies the result. 
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6. N O N C A N O N I C A L  I N I T I A L  C O N D I T I O N S  

The initial probability density for the system and heat bath considered in this 
section is identical to that of Eq. (20) in the momentum terms, except that the coordi- 
nate terms are replaced by Gaussian factors in the coordinates themselves, rather than 
in the spring stretchings, as follows, with the prime on the product denoting omission 
of variables numbered 1 -- N: 

f i  e x p [ - - x ~ 2 / 2 a 2 ]  i-[ exp[- -Pn2/2~2]  
p(0) --= c~(2~r)1/2 3(2~)1/2 

n=l n=l 

l-I' exp[-x"2/2E2] exp[-P"2/2$2] (57) 
• ,(2~r)1/~ 1-[' $(2~r)1/2 

where the coordinates and momenta are those at t : 0. Expectation values of the 
system coordinates and momenta are here chosen as zero at t = 0, although they 
can be chosen more generally without undue complication. Except for this somewhat 
restricted choice of initial expectation values, which does not affect the final result, 
Eq. (57) is the same probability density that we have treated in previous papers. (1,2) 
The average initial variances are seen by inspection to be, for the system, 

and for the heat bath, 

and 

(p~2>o : 33 (58a) 

<x~>o : ~2 (58b) 

(p2>0 = ~2 (59a) 

(xn~>o : ~2 (59b) 

The initial kinetic temperature of the heat bath is just that given by Eq. (22a), but 
for the potential temperature, we have 

(k /2){(x ,~+l  - -  x,~)2)o = meo2E 2 = k B T ~ / 2  (60) 

further emphasizing that E has different meanings in Eqs. (20) and (57). No problem 
of comparison will arise, however, if results are expressed in terms of temperatures 
rather than variances. 

We note here that, in addition to Eq. (60), nearest-neighbor spring stretchings 
are not independent; we have 

( ( x . + l  - -  x . ) ( x .  - -  x . -1 )>o = - -  ( x n 2 ) o ,  (61) 

an evident result, since the displacement xn stretches one of its connected springs and 
compresses the other. This claimed knowledge, that the initial stretchings of adjacent 
springs are not independent, is the basis for the result that the equilibrium entropy 
of the system is smaller than its canonical value, since the equilibrium reduced 
Liouville function reflects, in its departure from the canonical one, a persistent 
interdependence of adjacent elements of the chain. 
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Results of  the calculations for  elements of  the covariance matrix W and the 
ent ropy S are summarized in the following sections. 

6~ ~ lqoncanonical, Ordinary Variables, Free Chain 

The results of  this section have already appeared, (~,~) but  they will be included 

and 

and 

(x~(t)pj(t)) = (a= --  E ~) (2corn) (1, N; 2r - -  2i, 2r --  2j) 

-k (82 --  ~2)(2com)-~ [1, N; 2r - -  2i, 2r -- 2j) 
2r 

q- [~2(2~om)/4][dJ2~-2~(2r)/dr] -k ~2(4~orn)-~ f J2,-2;(Y)dy (64) 
0 

As r >~ N, these become 

(xn(t) x~+,.(t)) --~ (xz2(t)) - -  r(~/2~m) 2, r >/0  (65) 

(p~(t)p~++(t)) ~ (~/2)  8o~ + [(mw~)2/2](28o+ --  8++ --  8_1,.) (66) 

(xi(t)  p~(t)) -+ ~2/4o~m (67) 

(x~2(t)) -+ (~/2o~m) 2 r[1 --  J~(2r)] q- (E2/2) q- (52 --  ~z) N/(2oJm)2 (68) 

where the last two terms in Eq. (68) are negligible compared  to the r terms, as is the 
Jl(2r)  term for large r. The diffusivity is here seen to be 

D,  = ~2/4~om~ = kBTJ4mo) (69) 

as reported in L (1) Thus, the noncanonical  diffusivity depends only on the kinetic 
temperature,  in contrast  to the canonical result of  Eq. (48). 

The entropy diverges because of  the Brownian drift, as in the canonical case of  
Eq. (50), and it is fairly complicated even in the nondivergent terms. Since these 

for completeness. For  any t, we find 

(&(t)  x j( t ))  = (~2/2)[81j ,-1- J~i_~j(2r)] + (~/2com) 2 l r  [ f l  T Jo(Y)dy -- Jl(2~) 

l i - J I  2r 

2 f J2n-l(Y) dy l ', + (c~ 2 --  E2)(1, N; 2r --  2i, 2r - -  2j) 

[(8 z - -  ~)/(2wrn)2][1, N; 2r --  2i, 2r --  2/] (62) + 

(p i ( t )p j ( t ) )  = (~2/2)[8ij + Jei_zj(Zr)] + [(ecom)2/2][Jei-2J+2(Zr) + J2i-~5-2(Zr) 

- -  2J2i_~.(2r) + 28i~ --  8i.j-z - -  8i.~'+1] 

-[- (c~ 2 - -  E 2) (Zoom) 2 (1, N; 2r - -  2i, 2r - -  2j) 

§ (82 _ ~2) (1, N; 2r - -  2i, 2r - -  2j) (63) 
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terms will be exhibited in the next three variations of the problem, the entropy for this 
formulation will not be presented. The initial entropy, however, is found to be 

SN(0) = NkB 4- Nk~ ln(a6/h) = Nk~ ln[kB(TkoT~o/2)l/~/hoJ] 4- Nk~ (70) 

6.2. Noncanonical, Schr/~dinger Variables, Free Chain 

The elements of the covariance matrix as t --+ oe are found to be 

<~21+1~23>co = 0 (71a) 

<~2r~,,+z.}o~ = (~2/2rn) 6o. + (mw2.2/2)(26o. -- 61. -- 6_1~) (71b) 

= <~2r+l~2r+2n+1>~ (71C) 

The persistence of nearest-neighbor correlations should be noted. If  Eqs. (71) are 
chosen as the covariance matrix elements at t = 0, the covariance matrix Wu(t) is 
found to be independent of time, showing that these results do indeed prescribe an 
equilibrium state, though not a canonical one. 

The use of Eq. (60) for T~, the definition of Eq. (22a) for Tk, and the definition 
T = (T~ + Tk)/2 enable us to write 

l Ou 0 (72) det We(oo ) = k~ ~ 0 Du 

where the N • N matrix DN is given by 

 j4oo i) -- T~/4 T -- T J 4  0 ... 
DN . . . . . . . . . . . . . . . .  (73) 

0 0 0 . . . .  T J4  

If  we now write det DN = TNPN(y), where ), = T~/2T and PN is a polynomial 
in ~,, we find that 

P~v(y) = 2 -N ~ (_)5 2k 4- 1 ) y~j (74) 
j,k=0 

For large N, we find that 

2PN+I/PN ~ 1 4- (1 - -  ~/2)1/2 (75) 

For  ~ = 1/2 (when T~ = T~ = T), the result of Eq. (75) is 

PN+Z(1/2)/PN(1/2) ~ 0.933 (76) 

and numerical analysis of the polynomial set yields the very good approximation 

PN(1/2) ~ [(15/16)/(0.933)~](0.933) N ~ 1.078(0.933) N, N >~ 2 (77) 
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Since (det We) 1/2 = (kBT) ~ PN(7), we obtain f rom Eq. (18) and approximation 
(77) for  ), = 1/2, 

Se (~ )  ~ NkB + NkB ln(O.933knT/h~o) + kn ln(1.078), N ) 2 (78) 

The expression (78) for  the equilibrium entropy contains a small nonextensive 
term, which is negligible for large N, and a numerical factor (0.933) multiplying T that 
shows clearly the less-than-canonical value of  the equilibrium entropy. In general, for  
any ),, the factor 0.933 in Eq. (78) is replaced by [1 § (1 --  ~)~/~]/2, and the non- 
extensive term is still unimportant  for  large N. Since the definitions of  T, T , ,  and 7 
require that  7 ~ 1, the extensive par t  of  the entropy will always be less than (or equal 
to, when 7 = 0, which is unphysical) the canonical entropy for the same system. At  
t = 0, the entropy of  this system is that given by Eq. (70) plus the nonextensive term 
k~ ln(N + i). 

6.3. Noncanonica l ,  O r d i n a r y  Var iables,  x 0 Fixed 

The elements of  the covariance matrix are given in this case for  any time t as 

<xi(t) xj( t))  = ( ~  --  ~2) {(1, N; 2r --  2i, 2r --  2]) - -  (1, N; 2r - -  2i, 2r § 2j) 

- -  (1, N; 2r + 2i, 2r - -  2j) + (1, N; 2r + 2i, 2r + 2j)} 

§ (~2/2){same, except ( - -o% ~;. . .)} 

§ (8 ~ --  ~)(2com) -~ {same, except [1, N;...]} 

+ (~/2)  (2~om) -2 {same, except [--o% ~;.. .]} (79a) 

<pi(t)pj( t))  = (2meo) 2 ( ~  --  ~)  {(1, N; 2r - -  2i, 2r - -  2]) - -  (1, N; 2r --  2i, 2r + 2j) 

- -  (1, N; 2r + 2i, 2r - -  2j) + (1, N; 2r + 2i, 2r + 2j)} 

+ (E2/2) (2mo~) 2 {same, but  with ( - -  ~ ,  oo; . . . ,  ...)} 

§ (82 --  ~ )  {(1, N; 2r - -  2i~ 2r - -  2j) § etc.} 

§ (~2/2) {same, but  with ( - -c~,  oo; . . . ,  ..-)} (79b) 

and 

<xi(t)pj(t)) ~- (~2 _ as) (2eom) {(1, N; 2r - -  2i, 2r --  2j) - -  (1, N, 2r - -  2i, 2r -~ 2j) 

- -  (1, N; 2r + 2i, 2r - -  2j) + (1, N; 2r -}- 2i, 2r + 2j)} 

+ (~/2)  (2~om) {same, but  with ( - -  or, or; . . . ,  ... ,)} 

,4- (83 --  ~ )  (2eom) -1 {[1, N; 2r - -  2i, 2r --  2j) + etc.} 

+ (~ /2)  (2~om) -1 {same, but  with [--  ~ ,  or; . . . ,  ...)} (79c) 
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As t -+ 0% these become 

(XnX~+~). = (E~/2) 8o~" + [2n~/(2o~m)21, r >~ 0 

(PnP,~+~)~ = (~2/2) 8or + [(mwe)2/2](28o,, -- 8,~ -- 8_1~) 

and 

(x,~p,)~ = 0 

The determinant of the equilibrium covariance matrix can be written 

det W~(oo) = (kB~/2w2m) N I EN 0 I 
0 Dw 

where DN is given by Eq. (73), and Ew is the matrix 

(80a) 

(80b) 

(8Oc) 

(81) 

a 1 1 1 ... i ) 
+ o r + 2  2 "" 

E u =  1 2 e + 3  -.. (82) 
. . . . . . . . . . . .  : 

1 2 3 "'" a N 
where cr = (rno~e/~) 2 = (TJ2Tk). Then, det Wu(oO) becomes 

det WN(m) = (k9~2/2~o2m)(det D~v)(det EN) (83) 

where det DN has already been evaluated in the previous section, and det EN is found 
to be 

,( 
d e t E N =  ~ 4 2n 2 + 2 2n + 1 2 

n = 0  

(84) 

For the condition that T = T~ = Tk, so that a = y = 1/2, we obtain the very 
good approximations 

det DN ~ (0.933T) ~ (1.078), N ~> 2 (85) 

as before, and 

det EN ~ (1.866) N (0.790), N / >  2 (86) 

where 0.790 = 2.75/(1 + ~/3/2) 2, and 2.75 = det E2(1/2). A combination of these 
results yields 

SN(O0) ~ NkB + Nk~ ln(O.933k~T/hoJ) +. kB ln(0.924), N > / 2  (87) 

which agrees with Eq. (78) except for the small, nonextensive term. 

6.4. Noncanonical, SchrSdinger Variables, x 0 Fixed 

The results for this section are identical with those of Section 6.2, just as the 
Schr6dinger-variable description of equilibrium was found to be identical in the two 
comparable canonical examples. 
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7. D I S C U S S I O N  

In all the variations of the problem, the initial state of the heat bath permits the 
definition of kinetic and potential temperatures by use of k~T/2 = mean 
kinetic/potential energy of a mass/spring, and in all cases the final kinetic and poten- 
tial temperatures of the system were found to be equal to the arithmetic mean 
of the initial heat-bath temperatures. Thus, equipartition of energy is easily 
demonstrated. 

The behavior of the entropy function provides several useful insights. The initial 
entropy in each case depends upon the product of system-variable variances, as seen 
in Eqs. (33) and (70). This product, in turn, can be written as the geometric mean of 
initial kinetic and potential temperatures, as was done at the end of Section 5.1. This 
result suggests that we examine the final form of the entropy for a similar dependence, 
and indeed it exists. The equality of final potential and kinetic temperatures, because 
of equipartition, obscures the fact that T = (T~T~)I/2 in the entropy formulas. 
Examination of the covariance matrix W, however, shows, as in Eqs. (54), for example, 
that the equilibrium value of det W becomes the product of two determinants, one 
involving only the coordinates and the other only the momenta. These do not always 
become diagonal, but one can clearly be seen to yield a coordinate-related quantity 
that can be called the final potential temperature, and the other a momentum-related 
quantity called the kinetic temperature. Thus, in all cases, the final temperature 
turns out to be the geometric mean, from (det W)I/~, of the (equal) kinetic and poten- 
tial temperatures. 

These two temperatures are measures of the variances in the coordinates and 
momenta, just as the initial temperatures were given in terms of initial variances. When 
quantum systems are considered, the uncertainty principle bounds from below the 
product of coordinate and momentum variances. Thus, for example, the logarithmic 
term in Eq. (70) is prevented from being negative by the uncertainty principle. 

Although the entropy calculations herein are entirely classical and expressions 
such as Eq. (34) are not correct for the quantum mechanical entropy, the point here 
is that the entropy variable is keT/h~o, which is equivalent to [((3x)2)((3p)2)]i/2/h, a 
quantity that cannot become zero, and in fact should always be greater than unity. 
The entropy function, then, is well-behaved for our best possible measurements of 
initial conditions, and it increases as the mechanical-variable variances become larger, 
i.e., as our knowledge of these variables becomes less precise. 

When the heat bath is chosen to be canonical, the final entropies are found to be 
extensive, except in Section 5.2, where a single reference coordinate was needed to 
locate the position of the entire system, independent of N. This nonextensive term is 
time-dependent, increasing without limit as the system drifts, but the remaining 
contributions to the entropy are the usual thermal ones. Eliminating the Brownian 
drift by setting Xo = 0 for all t, or concealing it by the choice of Schr/3dinger variables, 
gives rise to the correct classical canonical equilibrium entropy of the system. On the 
other hand, the choice of independent Gaussian distributions for the heat-bath 
variables results in small nonextensive contributions to the entropy even when the 
Brownian drift is excluded. In the thermodynamic limit (N ~ oe), these terms dis- 
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appear, but they do serve as a reminder that the entropy is not fundamentally and 
necessarily an extensive quantity. 

In all cases, if the system comes to equilibrium with a heat bath at temperature 7"1, 
and then is allowed to come to equilibrium with another similarly defined heat bath 
and temperature T2, the entropy change is found to be 

SN(T2) -- SN(T1) = NkB ln(T2/T1) (88) 

so that the definition of the heat bath does not intrude upon the measured entropy 
change of a system. 

Finally, the physical picture of the noncanonical equilibrium is entirely 
reasonable. As best seen in terms of the SchrSdinger variables of Section 6.2, nearest- 
neighbor (anti) correlations persist at equilibrium. These represent the shortening of 
one spring and lengthening of the other as the mass between them moves, and the 
oppositely directed motions of masses on opposite ends of the same spring. Perhaps 
the real surprise is the realization that these motions are absent in the canonical 
system. 

It is interesting to observe that these correlations reduce the entropy of the 
system only if we know about them; they limit the freedom of the phase trajectory, in 
its coverage of the 2N-dimensional phase space, without contributing to observable 
quantities such as heat capacity. The result implies, for ordinary thermodynamics and 
statistical mechanics, that hidden correlations among the microscopic variables may 
exist without in any way making their presence known via the usual thermodynamic 
observations, in support of a comment made by Blatt. (6) 

A P P E N D I X  

The four-index symbols used in Sections 5 and 6 are defined as 

b 7" 7" 

[a, b; e, d] = Z f JcCY) dy f Je(z) dz CA.1) 
r = a  0 0 

b "r 

(a, b; e, d] = ~,, J~(-c) f Ja(Y) dy (A.2) 
q ' = a  0 

Jo(y) dy J~O) (A.3) [ a , b ; c , d ) =  ~ o 

b 

(a, b; c, d) = ~ Jr Ja('r) (A.4) 

b 

(a, b; ~, d) = ~ J,'(~') Ja('c) (A.5) 
~ f = a  

b 

(a, b; e, d) = ~ J~(.c) Ja'(~') (A.6) 
' f = a  
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and 
b 

(a, b; ~, ~l) = y, Jo'(r) Yj(r) (A.7) 

where J'(r) = dJ(r)/dr, and the summat ions  are always over the index r, which must  

appear  in c and d. 
Some specific infinite sums that  have been used are 

( - -  oo, oo; 2r + 1, 2r + 1 + m) = ~ Y2,.+z(r) Y~+x+m(r) 
q.=--oo 

(A.8) 
= �89 - -  Jm(Zr)] 

( - -o% m;  2r, 2r q- m) = �89 + J~(2r)]  (A.9) 

(-- 0% oo; 2r -- 2n, 2r -- 2m) = ( - -  0% oo; 2r, 2r + 2n - -  2m) 

= ( - -  0% oo; 2r, 2r + 2m - -  2n) 
(A.10) 

aT 

( - -  o% oo; 2r - -  2m, 2r1 = (1/2) f 4m(Y) dy 
0 

(A.11) 

( - -  0% oo; 2r q- 1 - -  2m, 2r -47 1] = (1/2) f J2m(Y) dy q- 4re(Y) dy 
0 0 

(A.12) 

2~ 

( - -0% oo; 2r - -  2j - -  1, 2r] = --(1/2)  f Jzj+l(Y) dy 
0 

(A.13) 

( - -  0% oo; 2r - -  2j, 2r q- 11 = (1/2) f J~J+I(Y) dy - -  &j+z(y) dy 
0 0 

(A.14) 

[--0% oo;2r ,  2r] = r [ f  Jo(y)dy--  J l (2r)  
0 

(A.15) 

[ - -0% - - ~ ;  2r - -  2n, 2r - -  2m] = [--0% oo; 2r, 2r] - -  
In--m] 2* 

fo 4~-z(Y) dy (1.16) 
j = l  

( - -0% oo; 2r - -  2n, 2r - -  2m) = (1/8)[Jz,_2m+z(2r) q- J2,~-zm-z(2r) - -  J~,-2,~(2 r )  

q- 28,m - -  3n.,~--1 - -  8,,m+11 (A.17) 

and 

( - -0% oo; 2r - -  2n, 2r - -  2m) = (1/4) dJ2,-2m(2r)/dr (A.18)  

Other, similar results can be obtained f rom obvious symmetry  propert ies or  f rom 
direct evaluation of  the infinite sums, using s tandard identities. These results and 
their derivations are available in limited supply. (4) 
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